## My Speech to 500 Australian Teenage Schoolboys About Mathematics

I suppose I should start with who I am and what I do and perhaps why I am here in front of you. But I’m not going to do that, at least not yet. I don’t want to stand here and list all my accomplishments so that you may be impressed and that would convince you to listen to me. No. I don’t want to do that because I know it wouldn’t work. I know that because it wouldn’t have worked on me when I was in your place and someone else was up here.

Now, of course you can tell by my accent that I wasn’t literally down there. I was in Canada. And I sure as hell wasn’t wearing a tie. But I imagine our priorities were fairly similar: friends, getting away parents, maybe sports (in my case hockey of course and yours maybe footy), but most importantly… mathematics! No. Video games.

I don’t think there is such a thing as being innately gifted in anything. Though, I am pretty good at video games. People become very good at things they practice. A little practice leads to a small advantage, which leads to opportunities for better practice, and things snowball. The snowball effect. Is that a term you guys use in Australia? I mean, it seems like an obvious analogy for a Canadian. It’s how you make a snowman after all. You start with a small handful of snow and you start to roll it on the ground. The snow on the ground sticks to the ball and it gets bigger and bigger until you have a ball as tall as you!

Practice leads to a snowball effect. After a while, it looks like you are gifted at the thing you practiced, but it was really just the practice. Success then follows from an added sprinkling of luck and determination. That’s what I want to talk to you about today: practice.

I don’t want to use determination in the sense that I was stubbornly defiant in the face of adversity. Though, from the outside it might look that way. You can either be determined to avoid failure or determined to achieve some objective. Being determined to win is different from being determined not to lose.

There is something psychologically different between winning and not losing. You see, losing implies a winner, which is not you. But winning does not require a loser, because you can play against yourself. This was the beauty of disconnected video games of 80’s and 90’s. You played against yourself, or maybe “the computer”. That doesn’t mean it was easy. I’ll given anyone here my Nintendo if they can beat Super Mario Bros. in one go. (I’m not joking. I gave my children the same offer and they barely made it past the first level). It was hard and frustrating, but no one was calling you a loser on the other end. And when you finally beat the game, you could be proud. Proud of yourself and for yourself. Not for the fake internet points you get on social media, but for you.

I actually really did want to talk to you today about mathematics. What I want to tell you is that, when I was your age, I treated mathematics like a video game. I wanted to win. I wanted to prove to myself that I could solve every problem. Some nights I stayed up all night trying to solve a single problem. You know how they say you can’t have success without failure? This is a perfect example. The more you fail at trying to solve a maths problem, the more you understand when you finally do solve it. And what came along with failing and eventually succeeding in all those maths problems? Practice.

Well I don’t know much about the Australian education system and culture. But I’m guessing from Hollywood you know a bit about highschool in North America. I’m sure you know about prom, and of course about Prom King and Prom Queen. What you may not know is that the King and Queen’s court always has a jester. That is, along with King and Queen, each year has a Class Clown — the joker, the funny guy. I wasn’t the prom king, or queen. But I did win the honour of class clown.

When I finished highschool, I was really good at three things: video games, making people laugh, and mathematics. I promise you, there is no better combination. If there was a nutrition guide for the mind, it would contain these three things. Indeed, now more than ever before, you need to be three types of smart. You need to be quick, reactive, and adaptive — the skills needed to beat a hard video game. You need emotional intelligence, you need to know what others are thinking and feeling — how to make them laugh. And finally you need to be able to solve problems, and all real problems require maths to solve them.

There are people in the world, lots of people — billions, perhaps — who look in awe at the ever increasing complexity of systems business, government, schools, and technology, including video games. They look, and they feel lost. Perhaps you know someone that can’t stand new technology, or change in general. Perhaps they don’t even use a piece of technology because they believe they will never understand how to use it.

You all are young. But you know about driving, voting, and paying taxes, for example. Perhaps it looks complicated, but at least you believe that you can and will be able to do it when the time comes. Imagine feeling that such things were just impossible. That would be a weird feeling. You brain can’t handle such dissonance. So you would need to rationalise it in one way or another. You’d say it’s just not necessary, or worse, it’s something some “other” people do. At that point, for your brain to maintain a consistent story, it will start to reject new information and facts that aren’t consistent with your new story.

This is all sounds far fetched, but I guarantee you know many people with such attitudes. To make them sound less harmful, they call them “traditional”. How do otherwise “normal” people come to hold these views? It’s actually quite simple: they fear, not what they don’t understand, but what they have convinced themselves is unnecessarily complicated. I implore you, start today, start right now. Study maths. It is the only way to intellectually survive in a constantly changing world.

Phew that was a bit depressing. Let me give you a more fun and trivial example. Just this weekend I flew from Sydney to Bendigo. The flight was scheduled to be exactly 2 hours. I was listening to an audiobook and I wondered if I would finish it during the flight. Seems obvious right? If there was less than 2 hours left in the audiobook, then I would finish. If not, then I would not finish. But here’s the thing, audiobooks are read soooo slow. So, I listen to them at 1.25x speed. There was 3 hours left. Does anyone know the answer?

Before I tell you, let me remind you, not many people would ask themselves this question. I couldn’t say exactly why, but in some cases it’s because the person has implicitly convinced themselves that such a question is just impossible to answer. It’s too complicated. So their brain shuts that part of inquiry off. Never ask complicated questions it says. Then this happens: an entire world — no most of the entire universe — is closed off. Don’t close yourself off from the universe. Study maths.

By the way, the answer. It’s not the exact answer but here was my quick logic based on the calculation I could do in my head. If I had been listening at 1.5x speed, then every hour of flight time would get through 1.5 hours of audiobook. That’s 1 hour 30 minutes. So two hours of flight time would double that, 3 hours of audiobook. Great. Except I wasn’t listening at 1.5x speed. I was listening at a slower speed and so I would definitely get through less than 3 hours. The answer was no.

In fact, by knowing what to multiple or divide by what, I could know that I would have exactly 36 minutes left of the audiobook. Luckily or unluckily, the flight was delayed and I finished the book anyway. Was thinking about maths pointless all along? Maybe. But since flights are scheduled by mathematical algorithms, maths saved the day in the end. Maths always wins.

How about another. Who has seen a rainbow? I feel like that should be a trick question just to see who is paying attention. Of course, you have all seen a rainbow. As you are trying to think about the last time you saw a rainbow, you might also be thinking that they are rare — maybe even completely random things. But now you probably see the punchline — maths can tell you exactly where to find a rainbow.

Here is how a rainbow is formed. Notice that number there. That angle never changes. So you can use this geometric diagram to always find the rainbow. The most obvious aspect is that the rainbow exits the same general direction that the sunlight entered the raindrop. So to see a rainbow, the sun has to be behind you.

And there’s more. If the sun is low in the sky, the rainbow will be high in the sky. And if the sun is high, you might not be able to see a rainbow at all. But if you take out the garden hose to find it, make sure you are looking down. Let me tell you my favourite rainbow story. I was driving the family to Canberra. We were driving into the sunset at some point when I drove through a brief sun shower. Since the sun was shining and it was raining, one of my children said, “Maybe we’ll see a rainbow!”

Maybe. Ha. A mathematician knows no maybes. As they looked out their windows, I knew — yes — we would see a rainbow. I said, after passing through the shower, “Everyone look out the back window and look up.” Because the sun was so low, it was apparently the most wonderful rainbow ever seen. I say apparently because I couldn’t see it, on account of me driving. But no matter. I was content in knowing I could conjure such beauty with the power of mathematics.

I could have ended there, since I’m sure you are all highly convinced to catch up on all your maths lessons and homework. However, since I have time, I will tell you a little bit about what maths has enabled me to get paid to do. Namely, quantum physics and computation. Maybe you’ve heard about quantum physics? Maybe you’ve heard about uncertainty (the world is chaotic and random), or superposition (things can be in two places at once and cats can be dead and alive at the same time), or entanglement (what Einstein called spooky action at a distance).

But I couldn’t tell you more about quantum physics than that without maths. This is not meant to make it sound difficult. It should make it sound beautiful. This is quantum physics. It’s called the Schrodinger Equation. That’s about all there is to it. All that stuff about uncertainty, superposition, entanglement, multiple universes, and so on—it’s all contained in this equation. Without maths, we would not have quantum physics. And without quantum physics, we would not have GPS, lasers, MRI, or computers — no computers to play video games and no computers to look at Instagram. Thank a quantum physicist for these things.

Quantum physics also helps us understand the entire cosmos. From the very first instant of the Big Bang born out of a quantum fluctuation to the fusing of Hydrogen into Helium inside stars giving us all energy and life on Earth to the most exotic things in our universe: black holes. These all cannot be understood without quantum physics. And that can’t be understood without mathematics.

And now I use the maths of quantum physics to help create new computing devices that may allow us to create new materials and drugs. This quantum computer has nothing mysterious or special about it. It obeys an equation just as the computers you carry around in your pockets do. But the equations are different and different maths leads to different capabilities.

I don’t want to put up those equations, because if I showed them to even my 25 year-old self, I would run away screaming. But then again, I didn’t know then what I know now, and what I’m telling you today. Anyone can do this. It just takes time. Every mathematician has put in the time. There is no secret recipe beyond this. Start now.

## Journal | December 2018

Ahhhhh! Summer in Australia. Why did I not know about you sooner?

# Eureka!

I’ve been working on a card game on and off for the past few months. Partly as an experiment and partly out of laziness, I decided to “give it away for free”. In practice, this was more work than I expected. For one, I had to learn a little bit about copyright. Long story short, it is released under the license CC-BY4.0, which means—loosely speaking—you can do anything you want with it provided you cite your sources.

One of the big cons of this approach is that you have to find your own way to print your own cards, which is either cheaply done on a desktop printer (lame!) or expensively done on high quality cardstock (ugh!). I’m not sure a way around this.

You can find the instructions for printing and playing the game here.

## Children’s Literature Recommendations

Pig the Grub by Aaron Blabey

Fun. But would you expect anything less with a Pig book? All the kids love a good Pig story.

Ada Lace Sees Red by Emily Calandrelli and Renaee Kurilla

This is the second book in the Ada Lace series and I think this one is even better than the first! There are lots of relatable elements to this story. But the science—oh, the science—for me made it all the better!

Book of Why: The New Science of Cause and Effect by Judea Pearl and Dana Mackenzie

OK, full disclosure. I made a huge mistake in buying the audiobook for this one. There is just too many references to figures to follow along. I made it through alright by slowing it down and already having some experience with causal networks, but I can’t really recommend, or not recommend, this one. Some of the historical anecdotes were interesting, but it was at times hard to read (errr… listen) to the author’s self-pity about not being more recognised.

Through Two Doors at Once: The Elegant Experiment That Captures the Enigma of Our Quantum Reality by Anil Ananthaswamy

Hands down the best popular account of quantum physics. This tells in beautiful detail the key issues surrounding the controversies of quantum physics. The way the author does this all from the lense of a single experiment is inspiring.

Bare Minimum Parenting: The Ultimate Guide to Not Quite Ruining Your Child by James Breakwell

Comedy mixed with unintentional parenting wisdom. The jokes and style get a bit repetitive, but overall I enjoyed the laughs.

Sapiens: A Brief History of Humankind by Yuval Noah Harari

Currently reading: Woo’s Wonderful World of Maths by Eddie Woo

# Writing!

Today is the day for ABCs of Engineering with Dr Sarah Kaiser. Check out my #12DaysOfEngineering over on Twitter.

While you are at it, pick up a copy of Blockchain for Babies with Marco Tomamichel.

The final cover for Cat in the Box (1 June 2019) is here. I’ve seen the internal illustrations and they are great as well! Looking forward to see this one hit the shelves next year! If you can’t quite read the book blurb, it says: Schrodinger’s famous paradox reimagined for the modern world, with more talking animals and fewer dead cats.

Big news for the Ferrie group! Dr Clara Javaherian and Dr Shibdas Roy have joined as postdoctoral researchers. They will both be working on the AUSMURI project, which is about machine learning and quantum control. Stay tuned to hear about some exciting new science this year!

• Vacation!

# Up next!

Both Blockchain for Babies and ABCs of Engineering are released on 1 Jan 2019! But, seeing as it is still peak summer in Australian, we’ll still be at the beach 😁

## ⟨B|raket|S⟩

Welcome to ⟨B|raket|S⟩! The object is to close brakets, the tools of the quantum mechanic!

Created by Me, Chris Ferrie!

2 PLAYERS | AGES 10+ | 15 MINUTES

Welcome to ⟨B|raket|S⟩! The object is to close brakets, the tools of the quantum mechanic! You’ll need to create these quantum brakets to maximize your probability of winning. But, just like quantum physics, there is no complete certainty of the winner until the measurement is made!

No knowledge of quantum mechanics is require to play the game, but you will learn the calculus of the quantum as you play. Later in the rules, you’ll find out how your moves line up with the laws of quantum physics.

## What you need

A deck of ⟨B|raket|S⟩ cards, a coin, and a way to keep score.

The instructions are here.

I suggest getting the cards printed professionally. All the cards images are in the cards folder. I printed the cards pictured above in Canada using https://printerstudio.ca. However, they also have a worldwide site (https://printerstudio.com).

You can print your own cards using a desktop printer with this file.

You can laser cut your own pieces using this file.

## Open Source

Oh, and this game is free and open source. You can find out more at the GitHub repository: https://github.com/csferrie/Brakets/.